
Decomposition of Graphs:

Exploring Graphs

Daniel Kane

Department of Computer Science and Engineering
University of California, San Diego

Graph Algorithms

Data Structures and Algorithms

https://bit.ly/graphalgorithmsclass
https://goo.gl/KAfKJT


Learning Objectives

Implement the explore algorithm.

Figure out whether or not one vertex of

a graph is reachable from another.



Outline

1 Problem Discussion

2 Ideas

3 Explore

4 Correctness

5 DFS



Motivation

You're playing a video game and want to

make sure that you've found everything in a

level before moving on.

How do you ensure that you accomplish this?



Examples

This notion of exploring a graph has many

applications:

Finding routes

Ensuring connectivity

Solving puzzles and mazes



Paths

We want to know what is reachable from a

given vertex.

Definition

A path in a graph G is a sequence of vertices

v0, v1, . . . , vn so that for all i , (vi , vi+1) is an

edge of G .



Formal Description

Reachability

Input: Graph G and vertex s

Output: The collection of vertices v of G so

that there is a path from s to v .



Problem

Which vertices are reachable from A?



Solution

A,C ,D,F ,H ,I .



Outline

1 Problem Discussion

2 Ideas

3 Explore

4 Correctness

5 DFS



Basic Idea

We want to make sure that we have explored

every edge leaving every vertex we have

found.



Pseudocode

Component(s)

DiscoveredNodes ← {s}
while there is an edge e leaving

DiscoveredNodes that has not been

explored:

add vertex at other end of e to

DiscoveredNodes

return DiscoveredNodes



Formal Specification

We need to do some work to handle the

bookkeeping for this algorithm.

How do we keep track of which

edges/vertices we have dealt with?

What order do we explore new edges in?



Outline

1 Problem Discussion

2 Ideas

3 Explore

4 Correctness

5 DFS



Visit Markers

To keep track of vertices found:

Give each vertex boolean visited(v).



Unprocessed Vertices

Keep a list of vertices with edges left to

check.

This will end up getting hidden in the

program stack.



Depth First Ordering

We will explore new edges in Depth First

order. We will follow a long path forward,

only backtracking when we hit a dead end.



Explore

Explore(v)

visited(v)← true

for (v ,w) ∈ E:

if not visited(w):

Explore(w)

Need adjacency list representation!



Explore

Explore(v)

visited(v)← true

for (v ,w) ∈ E:

if not visited(w):

Explore(w)

Need adjacency list representation!



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Outline

1 Problem Discussion

2 Ideas

3 Explore

4 Correctness

5 DFS



Result

Theorem

If all vertices start unvisited, Explore(v)

marks as visited exactly the vertices

reachable from v .



Proof

Proof.

Only explores things reachable from v .

w not marked as visited unless explored.

If w explored, all neighbors explored.



Proof (continued)

Proof.

u reachable from v by path.

Assume w furthest along path explored.

Must explore next item.



Outline

1 Problem Discussion

2 Ideas

3 Explore

4 Correctness

5 DFS



Reach all Vertices

Sometimes you want to �nd all vertices of G ,

not just those reachable from v .



DFS

DFS(G )

for all v ∈ V : mark v unvisited

for v ∈ V :

if not visited(v):

Explore(v)



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Example



Runtime

Number of calls to explore:

Each explored vertex is marked visited.

No vertex is explored after visited once.

Each vertex is explored exactly once.



Runtime

Checking for neighbors:

Each vertex checks each neighbor.

Total number of neighbors over all

vertices is O(|E |).



Runtime

Total runtime:

O(1) work per vertex.

O(1) work per edge.

Total O(|V | + |E |).



Next Time

More on reachability in graphs.

Application of DFS.


	Problem Discussion
	Ideas
	Explore
	Correctness
	DFS

